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See S. Friederich, Motivating Wittgenstein’s perspective
on mathematical sentences as norms, Philosophia
Mathematica (3) 19:1-17 (2011).

To introduce a Wittgensteinian idea, let’s start not with
Wittgenstein himself but with

Hilbert

(and his axiomatic method).
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Axioms as implicit definitions

Groundbreaking novelty of Hilbert’s “Foundations of
Geometry” (1899):

I Axioms as (implicit) definitions of the concepts they
contain

I no (external) criterion of truth for the axioms
I “[T]he role of intuition and observation is explicitly

limited to motivation and is [merely] heuristic.”
(Shapiro 2001)

Sharply contested by Frege, but Hilbert successful from a
historical perspective (even in philosophy of mathematics,
see structuralism)

Tait (2005): “The only conception of mathematics itself
that I believe to be viable.”



Motivating
Wittgenstein’s
Perspective on
Mathematical
Sentences as

Norms

Axiomatics à la
Hilbert

Implicit definitions
as norms

From the axioms
to the theorems

Summary

Questions on Hilbertian axiomatics

If this is a (or the) standard modern approach to
mathematics, philosophers should ask:

I What does it mean to treat an axiom as an implicit
definition?

I What is the status of theorems derived in
Hilbert-style axioms systems?

I Are they descriptions of anything?
I If so: of what and in which sense?

I shall argue: Propositions in Hilbert-style axioms systems
are conceptual norms functioning as standards of
what counts as using the concepts involved

This is a Wittgensteinian idea...
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Wittgenstein on mathematical sentences as
norms

From “Remarks on the Foundations of Mathematics”:

I [I]n mathematics we are convinced of grammatical
propositions,so the expression, the result, of our
being convinced is that we accept a rule. (RFM III,
§26)

I What I am saying comes to this; that mathematics is
normative. (RFM VII, §61)

I Mathematics forms a network of norms. (RFM VII,
§67)

In this picture: propositions as knots of the web, proof as
links between them.

Is this plausible for the axioms as implicit definitions?
Arguably, yes!
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Ordinary definitions

Consider, as an example, the definition of “prime
number”:

“A prime number is a natural number which has only two
natural divisors: itself and 1.”

This proposition (used as a definition)
I is not used to describe anything mathematical.
I is adequate to existing usage (“descriptive

definition”), but does not describe this usage.
I functions as a norm (standard of correctness) of

what counts as using “prime number”.
⇒ For ordinary definitions the idea that they function as
norms is plausible.
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The axioms as implicit definitions

Consider

“Each natural number has a unique successor.” (Peano)

Arguably, when used as an implicit definition, this
sentence plays a normative role in that it

I licences certain conceptual connections and rules
out others (“the two successors of n”).

I must be accepted in order for the concepts involved
to be used.

I partly constitutes what is meant by “Peano
arithmetic”.

⇒ For the axioms, treated as implicit definitions,
Wittgenstein’s perspective is plausible as well.
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“Let” and “by definition”

Wittgenstein in his Lectures:

“In a most crude way ... the difference between an
experiential proposition and a mathematical proposition
... [is that] we can always affix to the mathematical
proposition a formula like ‘ by definition’ .”

An alternative way of making the same point:

“Let each number have a unique successor.”

This formulation captures nicely how the axioms are used
when treated as implicit definitions.

The “let” underlines the normativity.
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All mathematical sentences as norms?

Motivated so far: Axioms (as implicit definitions) function
as conceptual norms.

According to Wittgenstein: All (accepted) mathematial
sentences are norms, even the derived ones.

Plausibility check: Is Fermat’s Last Theorem
(∀n, x , y , z ∈ N, n > 2 xn + yn 6= zn) nothing but a mere
conceptual norm?

Apparently natural idea: The axioms define the concepts.
The theorems use them to describe the mathematical
facts.
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Can Ought imply Is?

However:
I If what the axioms do is constraining the use of

concepts, how could we derive from them any truth
about any realm of objects whatsoever?

I In other words: How could fact-stating sentences
follow from mere conceptual norms?

I Crudely: How could one derive an Is from an Ought?
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Theorems as non-descriptive

True: Theorems are not primitive norms in the same way
as the axioms.

But this does not make them any more descriptive!

Someone not accepting a proven theorem plays a
different game, just as someone not accepting an axiom.
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An example

Consider three propositions which are equivalent in ZF
set theory:

I Axiom of choice
I Zorn’s lemma
I Zermelo’s well-ordering theorem

Which one to use as an axiom?

As soon as equivalence shown: mode of use exactly
equivalent.
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Conclusion of the motivating line of thought

As far as the descriptive/normative distinction is
concerned:

Axioms and theorems have the same mode of use.
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Summary and conclusion

Wittgenstein’s (exotic) idea that mathematical sentences
are used normatively has been motivated from Hilbert’s
(mainstream) account of the axioms as implicit
definitions:

I Definitions function as conceptual norms.
I This holds also for the axioms as implicit definitions.
I It plausibly extends to deductive consequences of

the axioms (the theorems) as well.
⇒ Motivation accomplished.
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